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FOR V/STOL AIRCRAFT

By Seth B. Anderson

SUMMARY

A study has been undertaken to define handling qualities criteria

for V/STOL aircraft. With the current military requirements for helicop-

ters and airplanes as a framework, modifications and additions _ere made

for conversion to a preliminary set of V/STOL requirements using a broad

background of flight experience and pilots' comments from VTOL and STOL

aircraft, BID (boundary-layer-control) equipped aircraft, variable sta-

bility aircraft_ flight simulators and landing approach studies. The

report contains a discussion of the reasoning behind and the sources of

information leading to suggested requirements.

The results of the study indicate that the majority of V/STOL

requirements can be defined by modifications to the helicopter and/or

airplane requirements by appropriate definition of reference speeds.

Areas where a requirement is included but where the information is felt

to be inadequate to establish a firm quantitative requirement include the

following: Control power and damping relationships about all axes for

various sizes and types of aircraft; control power_ sensitivity, damping

and response for height control; dynamic longitudinal and dynamic lateral-

directional stability in the transition region, including emergency opera-

tion; hovering steadiness; acceleration and deceleration in transition;

descent rates and flight-path angles in steep approaches, and thrust

margin for approach.

INTRODUCTION

For several years the NASA has been involved in the definition of

handling qualities criteria for airplanes and helicopters. It was rec-

ognized that handling qualities requirements are needed also for V/STOL

aircraft to insure their safe and efficient operation. The purpose of

this report is to suggest flying qualities requirements for V/STOL vehicles

which could be used: (i) to guide prospective users in setting up speci-

fications for any proposed operational V/STOL vehicle; (2) to judge the

ability of various types of V/STOL vehicles to meet reasonable require-

ments; and (3) to guide the flight test programs of various available

V/STOL testbeds. Since the data which are available for the flight
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conditions peculiar to V/STOLvehicles are incomplete, the requirements
presented herein are tentative, and it is anticipated that requirements
will be changed and added as more information becomesavailable.

To arrive at requirements for V/STOLvehicles, it w_s considered
expedient to use as a background the wealth of flying qualities informa-

tion contained in reference I for airplanes and reference 2 for helicop-

ters. The information was examined in the light of possible V/STOL

specifications to determine which areas were adequately covered and could

be used directly and which areas needed furthez research. Modifications

and additions to the airplane and helicopter requirements for conversion

to V/STOL requirements were based on a broad background of flight results

and pilots' comments (see pilot rating system, table I) from VTOLand STOL

type aircraft, BLC (boundary-layer-control) equipped aircraft, variable

stability aircraft, landing approach studies, and flight simulators. The

VTOL aircraft consisted of the following: The Bell X-14 deflected turbojet

(fig. i), the Bell XV-3 convertible helicopter (fig. 2), the Ryan VZ-3RY

deflected slipstream (fig. 3), and the Vertol \Z-2 tiltwing (described in

ref. 3). STOL experience was obtained from a rumber of aircraft (refs. 4

through 9) and included recent flight studies of the C-134A twin-engine

cargo airplane equipped with a full-span BLC system (fig. 4).

In addition to the V/STOL specifications, the reasoning behind and

the sources of information leading to the req_rements are discussed.

Those areas where the existing information is :'elt to be inadequate and

where additional flight or simulator research :s required have been pointed

out in order to formulate flying qualities req_irements with greater

confidence.

In this study an effort has been made to consider three classes of

aircraft; namely, light observation_ heavy surrei!lance or fighter, and

tactical transport. The general form of reference i has been followed as

closely as possible for organizational purpose_.

STOL operation as used in this report refers to flight at speeds

below the power-off stall speed or below the mLnimum speed with all engines

inoperative for aircraft not possessing an aer)dynamic stall (limited by

control power, visibility, etc.) or below the 3peed at which it is possible

to arrest sink rate to zero by aerodynamic mea_s alone (power off). In

general, therefore, STOL operation is dependent on engine power to augment

aerodynamic lift and change effective lift-dra_ ratio. VTOL operation

implies the ability to hover out of ground effect over a given ground

position in no wind.

DISCUSSION

The preliminary V/STOL requirements are crganized and presented in
a form similar to that used in reference i. _'able II is a tabulation of

the various handling qualities items along wi_h the appropriate airplane

r
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and helicopter requirements placed side by side for reference purposes.

These requirements have been paraphrased for brevity and can be reviewed

in detail by referring to the appropriate numbered paragraphs in refer-

ences i and 2. In the right-hand column are the V/STOL requirements.

Definitions of airplane classes and symbols can be found in the appendix.

In the following discussions the V/STOL requirements will be reviewed to

point out the reasoning behind each and the areas requiring further

research. In reviewing the V/STOL requirements, it should be kept in

mind that they are not intended to be rigid military-type specifications,

but rather those handling qualities which are felt desirable from what is

known at the present state of the art.

Mechanical Characteristics of Control System

Control friction and breakout force.- The relatively low values of

friction presented in the table are based on the desirability of obtain-

ing proper centering characteristics in a flight regime where the aero-

dynamic restoring forces are absent. In addition_ it should be noted that

during operation when the pilot can have only one hand on the control, the

values for wheel control should be essentially the same as for a stick

type of control. For power control systems in which there is both linkage

friction and valve friction, an additional requirement is that the magni-

tude of the linkage friction be at least twice the valve friction, the sum

of the two not to exceed the values quoted for V/STOL aircraft. This

relationship of linkage friction was chosen to avoid pilot-airplane

instability as noted in reference i0.

The centering characteristics required are the same as those contained

in the helicopter specification, chosen again on the basis of one-hand

operation for either wheel or stick controls. For this type of system

sufficient damping is needed to prevent undesirable cockpit control
oscillations.

Cockpit control free play.- The amount of free play in the cockpit

control has been specified in terms of percentage of full travel so as to

include both stick and throttle type controls; ±i percent has been speci-

fied for all types of control systems. Further work in this area will be

required to define allo_alole values for specific types of control systems

(i.e., acceleration or rate command) particularly in hovering flight where

unpublished simulator results have shown this factor to be significant in

the over-all suitability of the control system.

Artificial stability devices.- The general remarks for airplanes are

qualitative and it is felt that a more quantitative approach is needed to

define the allowable divergence rates for stability augmentation failure.

Accordingly, the values for helicopters (3.4.9a) are suggested as a start

in this direction; however, it is felt that more research is needed in

this area to define limits for V/STOL operation.



4

Longitudinal Stability and Control

Stick fixed static stability.- Recent tests with variable-stability

aircraft have indicated for some flight conditions that stick-fixed static

stability is not required as long as stick force and dynamic requirements

are met. For V/STOL airplanes_ however_ which are to operate extensively

at low speeds, flight tests (see_ e.g., refs. ii and 12) have indicated

the desirability of adequate stick-fixed staJility in the transition and

landing regions. In addition, the pitch-up lefined in the helicopter

specification (3.2._0) is considered undesirable if the instability occurs

in the speed range below that for minimum drag. Here again_ flight

experience (see ref. ii) in flying on the back side of the drag curve has

indicated a particular need for stable stick-fixed and stick-free gradients

in order to make satisfactory height adjustments along a desired flight

path in landing approach. It is to be noted that smooth, steady flight is

required throughout the speed range includirg maximum designated speed in

rearward flight. Since rearward flight may prove difficult for some VTOL

vehicles, further research is needed to estsblish limits compatible with

various mission requirements.

In regard to BLC failure it is specified that failure of the BLC

system shall not change the longitudinal stability characteristics suffi-

ciently that a dangerous flight condition results. Although no quantita-

tive values can be specified at this time_ flight experience with a number

of BLC systems has indicated the desirabilily of minimizing stability

changes due to BID_ particularly in landing approach where BLC

effectiveness is derived from the main engine.

Elevator stick-force variation with sp(ed in unaccelerated flight.-

Stick-free stability characteristics simila_ to those previously discussed

for the stick fixed are desired. A stable _tick-force variation with

speed is desirable over the complete speed _ange. The mild pitch-up pre-

viously mentioned for the stick-fixed case _uld not be tolerated if it

occurs on the back side of the drag curve. In addition_ the force rever-

sal in airplane requirement 3.3.2.1 is considered too large. In order to

aid in obtaining adequate precision control below the trim speed_ the

requirement has been revised to state that _he reduction in force shall

not decrease by an amount greater that the _riction force for the

comparable airplane class.

Exception in transonic flight.- V/STOL aircraft which operate in or

through the transonic speed range should me_% the characteristics specified

for air!olanes (3-3.3).

Stability in accelerated flight.- For reasons similar to those stated

in the discussion of stick-fixed static sta)ility_ a stable gradient of

elevator position variation with normal acc_leration is specified for all

fo_ard flight conditions. No requirement is felt necessary for rearward

flight _here acceleration values would be snail.
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Control effectiveness in unaccelerated flight.- The desirability of

a margin in control effectiveness at each end of the speed range (noted

in helicopter requirement 3.2.1) to cope with effects of longitudinal dis-

turbances is well founded. The question of how much margin in needed for

V/STOL aircraft throughout the speed range has yet to be determined _ith

the desired accuracy. As a start_ ho_ever_ a helicopter requirement which

states a margin of at least i0 percent of the maximum attainable pitching

acceleration in hovering *z has been suggested for VTOL operation. For

STOL operation it is felt that a quantitative requirement is necessary

also to insure adequate control effectiveness throughout the speed range.

Further research is needed in this area_ however_ for a firm requirement

to relate control effectiveness requirements to disturbing moments.

A

4

0

6

Control effectiveness in accelerated flight.- Because of the large

effects that engine power may have on the ability to develop maximum lift_

requirement 3.3.8 for airplanes has been increased in scope to include

the effects of engine power.

Longitudinal response.- While no requirements have been specified for

airplanes for the initial response of the longitudinal mode_ operation of

V/STOL aircraft at i_¢ values of dynamic pressure will require a closer

examination of the desirable values for the initial response characteris-

tics. Accordingly_ the value from helicopter requirement 3.2.9 has been

added as a first step in defining satisfactory response characteristics.

Further research is needed to authenticate this value for V/STOL operation.

Control forces in steady accelerated flight.- The stick-force

gradients for V/STOL aircraft have been chosen to remain essentially the

same as for airplanes (table in 3.3.9) except that the maximum force

gradients for wheel controls should be low enough that during V/STOL

operation one-hand operation is feasible. In general_ a major portion

of V/STOL operation will be conducted at low values of acceleration and,

therefore, the stick force gradients do not require as close scrutiny as

for a high-speed fighter. It is felt, however_ to ease the task of pre-

cision flying with V/STOL vehicles_ requirements dealing with control

force magnitude_ linearity, and sense are highly desirable.

Control forces in sudden pull-ups.- Airplane requirement 3.3.10 _as

originally intended to guard against overshooting a given acceleration in

a sudden pull-up where relatively little control force is generated by

control deflection. A requirement of this type is felt to be even more

significant for V/STOL aircraft, particularly for control systems without

power boost for which large inertia of the control system combined with

small restoring forces at low dynamic pressure can result in poor precision

in controlling the aircraft. Requirement 3.2.$ for helicopters_ which

states that during and following a rapid displacement of the control_ the

force acting to resist the displacement shall not fall to zero_ is felt

to be unconservative. Therefore, in addition to airplane requirement

iHereinafter an asterisk denotes an extension of reference 2 based on

unpublished helicopter handling qualities studies and results of refer-

ence 13.



3.3.10 the stipulation is included that the _tick force shall always lead
the acceleration by an adequate margin to provide satisfactory anticipation
of the resultant acceleration.

Control cross-coupling.- Control cross-coupling, peculiar to some

helicopters without power boosted control sy_tems, destroys control har-

mony. In an attempt to provide the pilot with the best possible control

system_ the requirement is written to discourage any control force cross-

coupling.

Longitudinal short-period oscillations.- For most airplanes_ the

short period and the phugoid modes have widely different periods and are

not coupled. At the low speeds of V/STOL operation, however_ the two

modes may have similar periods; the combined effect of the short period

and phugoid on the over-all aircraft behavicr must be such that the ensu-

ing motion is satisfactory. Considerable flight and simulator experience

has made it possible to establish more specific requirements for the

short-period dynamic behavior of aircraft (see_ e.g., ref. 14). The

results for airplanes as obtained from reference 14 and unpublished

results from tests of a YF-86D variable-stability airplane are presented

in figure 5 in terms of frequency and dampi_;g ratio. These data have

been used to select a boundary for V/STOL aircraft in configuration P.

Data are not available to define a boundary for configuration PA. As

indicated in figure 5, however; data obtain_d in landing approach for a

number of fighter aircraft and helicopter r,_quirement 3.5.1.1 point out

that lower frequencies and less damping may be acceptable for configura-

tion PA. As a start, therefore; a helicop%_r requirement is suggested in

_hich the damping ratio must be at least 0.)55 for periods less than 5

seconds.* Further research is necessary to define boundaries in config-

uration PA for V/STOL aircraft. In an atte:mpt to define desirable

maneuvering stability characteristic s_ helicopter requirements 3.2.11.1

and 3.2.11.2 are suggested.

Long-period (phugoid) oscillations.- T_e phugoid osciliation_ which

is of relatively long period for airplanes in the cruise configuration_

has not had a specific damping requirement. At low speeds typical of

STOL operation, however, the phugoid may become a problem as the period

is reduced. The damping specifications foz satisfactory dynamic stability

for helicopters require damping ratios ran_ing from 0.055 to -0.22 in the

period range from 5 to 20 sec.* For the most part these data, which are

based on a background of helicopter experience in the lateral-directional

oscillatory mode and in the longitudinal mode, are qualitative in nature

and it is felt that additional research is required in transition and

landing approach to define with greater confidence satisfactory phugoid

characteristics for V/STOL aircraft. Resets of simulated instrument

flying with a variable-stability B-26 airplane (ref. 15) have indicated

the desirability of the phugoid damping ratio being 0.15 or greater.

For extremely long periods, 50 seconds or longer, a damping ratio of -0.i0

was acceptable. For the period range in w_uich the phugoid is approxi-

mately 15 seconds_ experience has shown t½_t a neutrally damped phugoid
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is acceptable only if the short period is satisfactorily damped also. In

order to minimize the effects of longitudinal disturbances in V/STOL

operation, the requirements specify a minimum damping ratio of -0.i0 for

periods longer than i0 seconds.

Conventional longitudinal short and long period dynamics are confined

to the vertical plane of motion. A longitudinal disturbance along the

thrust axis has been encountered on one V/STOL aircraft. This longitudinal

acceleration-deceleration characteristic which has a period of the order

of i0 seconds is felt to be associated with the large diameter rotor system

employed on the aircraft. Needless to say, this characteristic was

considered unsatisfactory.

Longitudinal control effectiveness in hovering.- The ability to

position VTOL aircraft accurately and rapidly over a given spot is a pri-

mary consideration in defining control power and control sensitivity. 2

The effects of gust disturbances and aerodynamic and engine gyroscopic

cross-coupling effects may further complicate the problem. In order to

insure that adequate longitudinal control power is available for VTOL

aircraft for maneuvering and gust disturbances during hovering, values

for control power are suggested which were derived from the results in

references 16 and 13 of tests of a variable-stability helicopter and

include take-off, landing, hovering, quick stops, and fo_ard flight at

various speeds. These results, which show the relationship of control

power to aerodynamic damping, represent a significant improvement in

analysis of hovering control for design purposes. Unpublished results

obtained on a flight simulator with pitch freedom indicate that for the

longitudinal case the minimum acceptable control power values were rela-

tively insensitive to the amount of aerodynamic damping present. This
was not true in the roll mode as will be discussed later. The control

power specified for VTOL aircraft may not apply accurately to all sizes
of VTOL aircraft since different sizes would be disturbed different

amounts by gusts; however, until further research is conducted the values

specified in the helicopter requirement which take aircraft weight into

account are useful. No maximum limit on control power is felt necessary.

Longitudinal steadiness in hovering.- Helicopter requirement 3.2.2

was established in an attempt to set tolerable limits on the motion

induced in the vehicle by downwash-ground interference effects. The

motions, characterized by erratic darting and random unsteady behavior,

are considered satisfactory in helicopter requirement 3.2.2 if only a

small amount of control motion (±! inch) is required to hover over a

given spot. Although this may give a rough measure of hovering steadi-

ness, it is felt that control motion in itself is not representative of

hovering steadiness since other factors_ such as control sensitivity

and frequency of control motion, and amplitudes of excursions are also

important in assessing hovering behavior. Further research is needed in

this area to define acceptable hovering steadiness more quantitatively.

mControl sensitivity maybe defined as the slope of the control-power-

deflection curve. For iine&r control characteristics the two terms may be

used interchangeably.



Oneof the factors which has a direct effect on hovering behavior,
pal_ticularly in rough air, is the amount of aro_ular damping. In order

to insure satisfactory initial response characteristics following a longi-

tudinal control input and to minimize the effects of external disturbances,

a requirement for damping has been included. No maximum damping value is

considered necessary. The damping values werc obtained from the results

of a variable stability helicopter (refs. 16 _nd 13) and, as mentioned

previously_ may require modification for larg_:r aircraft or for aircraft

which would tend to be less disturbed by gust_;. Lower acceptable limits

for damping in pitch have been demonstrated i_ recent unpublished simu-

lator studies. F_rther research on gust dist_Lrbing effects is considered

necessary, however, to determine a requiremen_ which more directly takes

airplane size and type in consideration.

Height control in hovering.- The present helicopter requirement 3.2.3

for height control which specifies altitude control within +I foot with

not more than ±i/2-inch movement of the collective control has been

retained but is not considered completely definitive of height control

for the same reasons as previously mentioned _or control in longitudinal

steadiness. In addition, in order to develop satisfactory criteria for

height control, research is needed to establi {h limits of control po_er_

sensitivity, and d_nping similar to those dev _loped for the aerodynamic

controls. Other factors, such as ground suct :on effects, visibility_

thrust response (engine or stored rotor), and thrust margin should be

considered in the over-all picture of factors influencing height control.

Additional research is required to provide s_fficient information relative

to heigi% control for a more quantitative requirement.

Acceleration-deceleration cha_'acteristics.- The ability to accelerate

and decelerate quickly in a safe and efficient manner at constant altitude

or along a constant flight path angle is one If the important items affect-

ing the utility of the VTOL vehicle. For a tactical transport capable of

operating at high subsonic Mach numbers, the constant altitude requirement

may be relaxed to fit the mission characteristics for this type vehicle.

From the flight tests conducted so far a hunker of points have been noted.

Although the vehicle must be able to accelerste rapidly, a limit on thrust

rotation may be necessary to avoid _ing stal2 on some configurations. On

the other hand., deceleration should not be !Jmited because of the necessity

of maintaining high percent engine power few i to supply bleed air for

reaction controls_ nor should deceleration bc limited by ability to main-

taim trim with the longitudinal control. In addition, it should be possi-

ble to decelerate rapidly without stalling o_ objectionable buffeting, and

thrust response must be rapid enough to prewnt the aircraft from settling

}_hen slowing down to hover. This was particl_arly true on one aircraft

(ref. 17) which required a large, sudden inc:'ease in power for level

flight. In this case the problem _as made m(,re difficult because avail-

able power _as marginal. In addition to the aforementioned items_ some

reasonable value of distance or time for dec,_leration is needed to define

deceleration characteristics adequately. In the interim, until further

research is completed, the requirement state_ that the deceleration should

be compatiLle _{ith the mission requirement.
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Conversion z and transition characteristics.- Transferring smoothly

from thrust lift to aerodynamic lift is important to the success of the

VTOL vehicle. Although only a limited amount of information is available

from flight tests at this time, the following points have been noted.

Flexible operation depends on the ability to safely and readily stop con-

version or transition in either direction. Both flight (ref. 3) and

simulator results (ref. 18) have disclosed the desirability of minimizing

pitch changes during conversion and transition. Large pitching moments

may occur unless conversion controls are programed correctly with airspeed.

Another factor in transition is concerned with establishing an adequate

speed margin between the speed at which the weight of the aircraft can be

supported completely by the wing and the maximum forward speed obtainable

with the thrust directed for hovering flight. This may be a problem for

some configurations for which acceleration is obtained by tilting the

thrust vector forward. The large ram drag inherent in some types of

propulsion systems may limit the maximum forward speed to undesirably low

values. For safe operation it is highly desirable for wave-offs or land-

ings to be possible with the critical engine inoperative at any time during

transition. The aforementioned items have been placed in requirement

form. Further research is required to arrive at more quantitative require-
merits for conversion and transition.

Steep descent characteristics.- The ability to make steep descents

is important to the utility of the V/STOL vehicle. However_ flight tests

have indicated that a number of fundamental problems must be solved if

steep descents are to be feasible. These include aircraft disturbances

due to wing stalling or rotor flow instability which occur in steep

descents because of the high induced angles of attack. Another problem

concerns the effects of the reduction in engine power required to obtain

low effective L/D values for steep descents. This was disclosed by

recent flight tests of an STOL aircraft which derives large lift gains

from engine power. Unpublished results show that as engine po_er is

reduced_ the minimum approach speed must be increased because the stall

speed increases and the control power decreases (as a result of reduced

slipstream velocity). In addition it should be possible to control atti-

tude and rate of descent accurately for landing. In this regard sufficient

visibility must be available to give the pilot the necessary cues for

landing at a given spot. The requirement for angle of descent has been

written in general terms since specific mission requirements will dictate

approach angles and descent rates. More research and operational experi-

ence is necessary to establish more firmly values for rate of descent com-

patible with mission requirements. In this regard studies in reference 19

indicate that at least for helicopters it is not feasible to descent at

rates greater than approximately i0 feet per second in steep approaches
under instrument conditions.

Longitudinal trim changes.- The airplane requirement for trim change

3.3.19 has been followed in general but in addition wing sweep position

and thrust direction are specified. Additional items may be required as

SConversion refers to a configuration change such as wing and/or rotor

tilting_ flap deflection_ thrust deflection_ wing translation_ etc.
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more experience is gained in this area. Maxinumallow_ble force changes
have been reduced to +i0 pounds for stick or _¢heelin an attempt to
minimize trim changes, thereby avoiding the necessity of operating trim
devices in addition to conversion devices. Although no direction of the
force changes has been specified, it maybe desirable in certain cases
to specify a direction. For example, in studies of landing approach
techniques (refs. ii and 20) it _as found that flight path control was
improved if increases in engine power producei slight nose-up trim changes
and vice versa with negligible effect on airspeed. A desirable magnitude
of this trim change_as not determined, however, and information about a
preferable direction for the other items is rot available at this time.

_Longitudinal, lateral, and directional trim effectiveness.- The

ability to trim the control forces to zero over the speed range including

zero airspeed is important for V/STOL aircraft because of the extended

periods of operation in the low-speed area.

Irreversibility of trim controls.- AirpTane requirement 3.5.5 is

satisfactory in this regard.

Trim system failure.- Airplane requirement 3.5.6 is considered

adequate for V/STOL aircraft.

Height control characteristics.- The us_ of collective pitch or

throttle controls for height adjustment requires essentially the same

mechanical characteristics as conventional s_ick controls since they are

used in a similar manner for VTOL operation. The forces on the throttle

type height control have, therefore_ been proportioned according to an

average representative throttle length.

Longitudinal trim change due to sidesli0.- The maximum allowable

longitudinal control forces for the various _irplane classes have been

specified sufficiently low to be held with o le hand. It is felt that

the longitu_inal trim change due to the side31ip for the conditions spec-

ified in helicopter requirement 3.3-9 should not be so great that no

margin in longitudinal control is available to cope with gust disturbances.

Accordingly, a margin equal to i0 percent of the maximum hovering angular

acceleration is specified for VTOL operation. No requirement is specified

for STOL operation; however_ a sufficient margin should exist for the same

reasons. F_rther research is needed to define a margin for STOL operation

and to determine the applicability of the l£-percent margin to all VTOL

configurations.

Control effectiveness in take-off.- To insure that take-off

performance is not _mduly compromised, airplane requirement 3.3.11 to

adjust take-off attitude has been modified %o include all classes of

STOL aircraft and to apply on sod and hard _urfaces. For VTOL operation

the helicopter requirement 3.4.4.1 has been used except that the wind

velocity has been deleted since this will vary with the mission require-

ments of the vehicle. Experience in VTOL oi:eration has shown that it is
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desirable for the longitudinal control, which may depend on the main

engine for power, to be powerful enough to adjust the attitude of the

airplane so that the thrust vector is directed as necessary to prevent

fore or aft translation during run-up to maximum power. In addition, in

order to check for proper functioning (direction) of the controls it

should be possible to observe control motion or the effect of control

movement on the aircraft motion during run-up at reduced power. _

Longitudinal control force's in take-off.- The control force limits

have been reduced in magnitude to permit one-hand operation during take-

off and climb for either stick or wheel type control.

Control effectiveness in landing.- The longitudinal control shall be

powerful enough to land the airplane at designated wind conditions under

a variety of approach conditions. For example, in steep descents when it

may be necessary to reduce engine power significantly, the type of longi-

tudinal control that derives it power, in part 5 from the main engine (such

as reaction type using bleed air) must be able at reduced engine power to

meet requirement 3.3.14 for airplanes. In addition, adequate control

should be available to land the airplane safely at the minimum operating

speed. The minimum operating speed for V/STOL aircraft is defined as the

speed from which a safe landing can be made with the critical engine

inoperative. The minimum operating speed is construed to apply to single-

engine or multiengine vehicles. On multiengine VTOL aircraft, the minimum

operating speed would be zero if it were possible to hover with the criti-

cal engine inoperative. The term minimum operating speed as used through-

out this report is felt to be a logical approach to safe operation of

V/STOL vehicles. It is recognized that except in emergencies neither

commercial helicopters nor military aircraft operate in such a manner

that would prevent a safe landing if the critical engine failed.

Control forces in landing.- As mentioned previously, the maximum

allowable longitudinal control forces have been kept low to permit one-

hand operation for stick or wheel.

Control forces in dives.- In dive maneuvers where it is felt that

V/STOL aircraft will not operate over prolonged periods, the force values

for airplanes have been retained.

Auxiliary dive recovery devices.- No changes have been felt necessary

from the airplane requirements for V/STOL aircraft.

Effects of drag devices.- Recent studies in landing approach (ref. 20)

of a continuously adjustable thrust reverser on a single-engine jet

fighter and unpublished data of thrust attenuators on a twin-jet trainer

have sho_n the feasibility of this type of device for use as a flight path

control during landing approach. When used as a flight path control it

was found desirable that increases in reverser deflection (reducing for-

ward thrust) should produce mild increases in nose-down trim with

negligible change in airspeed.
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Lateral-Directional Stability and Control Characteristics

Damping of the lateral-directional osci!_ations.- The airplane

requirement 3.4.1 is based on research reported in reference 21. More

recent work reported in reference 22 was primarily directed toward inves-

tigating whether the requirement was too strip,gent for emergency operation.

These latter results are presented in figure 6 along with airplane require-

ment 3.4.1. In the tests of reference 22, a variable-stability F-86E was

used to make simulated landing approaches for various lateral-directional

characteristics. Included in these studies was a rough air simulation

obtained by sending random inputs to all controls. These tests disclosed

that for the emergency condition (stabilizati(n devices inoperative), the

values in requirement 3.4.1 could be drastically reduced. In the landing

approach configuration even slightly divergent oscillations were acceptable

at the lower roll-to-yaw ratios. In addition_ there were indications that

the parameter !/T1/2 would be more descriptive than i/Cl/2 to the pilot

for rating damping. Other factors, such as adverse yaw, are know to

influence the damping requirements. In view of the many variables which

influence the lateral-directional damping and because these variables must

be considered in operation of the V/STOL airc_'aft, further research is

needed to extend airplane requirements to the low-speed region of the

V/STOL vehicle. In the interim, the boundari_s noted on figure 6 are

suggested. It can be noted that in line with the results of reference 22

for landing approaches the boundaries for V/S!_L aircraft have been

shifted to reflect lower damping requirements_

Spiral stability.- From considerations s_ch as those discussed on

spiral damping in reference 23 it is felt tha_ greater restrictions than

those for airplanes may be placed on spiral dLvergence for STOL operation

because heading changes associated with the s)iral mode will become more

significant at lower speeds. Until further r_search is conducted to set

limits for V/STOL operation, however, airplan_ requirement 3.4.2 is useful.

Steady sideslip conditions.- In order to adequately specify the
conditions under which directional characteristics are to be checked,

considerably more operational experience with various types of V/STOL

vehicles must be acquired. For example, the z_ximum sideslip condition

specified for helicopters is 45 ° , yet flight _t 90 ° sideslip is not

uncommon. Until operational limits compatibl_ with mission requirements

can be established more accurately, the combined conditions outlined in

airplane requirement 3.4.3 and helicopter reqlirement 3-3-9 are suggested

for V/STOL aircraft.

Static directional stability (rudder posLtion).- In general, it is

desired that static directional stability be 3uch that increases in rudder

deflection accompany increases in sideslip over the full sideslip range up

to 90 ° . However, until further research is c_nducted to ascertain the

feasibility of this criterion for VTOL operation, airplane requirement

3.4.4 (_r/_ > O) shall apply over the sideslip ranges specified.
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Static directional stability (rudder force).- Characteristics similar

to those discussed in the foregoing section on rudder position are desir-

able for rudder force. As noted before, however_ until further experience

has been obtained in this area_ a reduction is permitted in rudder force

with increase in sideslip for sideslip angles greater than 15 ° from that

for wings level. Because recent experience in STOL operation has indicated

the desirability of keeping the reduction in rudder force to a minimum_

the airplane requirement which allowed the force to decrease but not to

zero has been changed to allow reduction of rudder force to only one half

the maximum value_ but not less than the friction value.

Dihedral effect (aileron force).- A similar reasoning to that used

for rudder characteristics shotuld be applied to aileron (force and posi-

tion) when operating V/STOL aircraft. In addition_ the aileron force

should not exceed i0 pounds in keeping with one-hand operation. For

transient type maneuvers_ such as wave off, negative dihedral effect (not

to exceed i0 pounds) is permissible.

Dihedral effect (aileron position).- As previously discussed, linear

position characteristics are desired over the sideslip angle range extend-

ing to 90 ° sideslip. Further research is necessary for dihedral effect

also to define requirements from a practical and operational standpoint.

In order to have available some margin of control for gust disturbances,

it is recommended that positive dihedral effect never be so great that

at maximum sideslip, less than i0 percent of maximum rolling acceleration

is available for all classes of V/STOL aircraft at the minimum operating

speed.

Side force in sideslips.- Airplane requirement 3.4.8 specifies that

increases in bank angle accompany increases in sideslip. In addition to

this it would be desirable to be able to define the minimum slope of bank

angle versus sideslip which at a given airspeed would give the pilot an

appreciation of the magnitude of sideslip angle. Sufficient information

is not on hand, however_ to establish a revised requirement.

Adverse yaw.- The amount of adverse yaw tolerable for airplanes has

been established at 15° as a representative value to restrict heading

changes to a controllable value. Recent studies in landing approach

(ref. 24) have shown, however_ that sideslip itself may not be indicative

of a heading change in that appreciable values of sideslip can be obtained

by merely rolling around a highly inclined longitudinal axis with little

or no heading change. Since it may be necessary for STOL vehicles to use

relatively large angles of attack to make steep approaches_ it is felt

that a closer examination of allowable sideslip angles will be required

to set limits for STOL operation.

Although in general_ favorable yaw has not been a major handling

qualities problem of conventional airplanes, recent experience with a

VTOL aircraft, in which favorable yaw due to lateral control deflection

_¢as incorporated, has indicated the desirability of keeping this item to
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negligible values. There is not sufficient information at the present

time to specify a maximum allowable value; however, the V/STOL require-

ment has been _ritten to the effect that favorable yaw shall not be of

sufficient magnitude to be objectionable.

Asyzmetric power (rudder free).- Airplane requirement 3.4.10 has been

retained in essence except that the reference spced has been changed to

include all speeds above that for minimum drag.

Directional control (symmetric power).- The requi_ememt for airplanes

has been Modified to extend the speed range for _/STOL aircraft down to the

minimum operating speed and to reduce the maximum rudder force to i00

pounds. This value is felt to be more compatible with precision of control

and safety. For VTOL operation the initial trim condition is set at hover

and no maximum force values are felt to be required. Additional research

is needed to extend the i0 ° sideslip value given in airplane requirement

3.4.11.1 for landing to cover values more representative of V/STOL

operation in cross winds.

Directional control (asymmetric power).- As before, the condition for

minimum speed has been referenced to the minimum operating speed rather

than a stalling speed. In addition, it is felt iLecessary to include the

wave-off condition and a margin of rudder control to maneuver. The allow-

able forces have been lo-_ered to a maximum value of i00 pounds for reasons

previously discussed.

Directional control during take-off_ landin_ and taxi.- The

directional control requirements for airplanes a:_d helicopters have been

combined in an attempt to provide satisfactory d_rectional control for

the maximum designated wind velocity in any direction for all classes of

V/STOL aircraft. Additional testing undoubtedly will point out the

relative merits of each V/STOL concept for operating under various wind

conditions.

Directional control to counteract adverse y_w.- The airplane

requirement has been changed to reference trim sLdes!ip angle and to

lower the maximum allowable rudder force to i00 _ounds.

Directional control in dives.- Airplane reqlirement 3.4.15 has been

changed slightly in regard to rudder force since it is felt that no
distinction should be made for maximum allowable rudder force for various

classes of V/STOL airplanes. A maximum value of i00 pounds has been

selected for reasons previously discussed.

Directional steadiness in hovering.- As noted in the previous

discussion on longitudinal steadiness in hovering, control motion in

itself as used in helicopter requirement 3.3-3 is not felt to be adequate

to define directional steadiness in hovering ovcr a given spot. Although

this part of the requirement has been retained_ further research is needed

in this area also for more suitable parameters ior measurement of

directional steadiness.
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It is recognized that directional damping will improve the hovering

steadiness and, as discussed before_ the values derived from the helicopter

tests of references 16 and 13 are used as a first choice. Additional

research is needed to provide values representative of the requirements

for various sizes and types of VTOL vehicles.

Directional control power in hovering.- Directional control power

should from the flight safety standpoint be the least demanding compared
to roll since directional rotation at touchdown is not as serious as side

velocity. Yet in view of this, the amount of directional control power

desired from tests of the variable stability helicopter (ref. 16) was large

in comparison with that required for either pitch or roll. In this case

the large amount of directional control power specified was felt to be due

in part to the high directional stability of the test vehicle and the par-

ticular precision task used in the flight tests. As a result of additional

studies, the values recommended in reference 16 have been reduced as noted

in reference 13. Until additional research is comp!eted_ however, to

establish the maximum amount of control power needed for other sizes and

types of VTOL aircraft, the values noted in the helicopter requirement are

suggested. An additional requirement is felt necessary to set a minimum

directional control power value in hover since even for large aircraft a

lower limit is needed for maneuvering. For this condition it is recom-

mended that sufficient directional control power be available to establish

a yaw displacement not less than 15 ° after one second for full control
deflection.

Hovering turns in winds.- The requirement for helicopters 3.3.6 which

specifies 360 ° turns over a given spot in a 30 knot wind has been relaxed

for VTOL aircraft to match the mission requirements for a given vehicle,

since it is felt that rearward and sidewise flight at 30 knots may not be

required for some VTOL concepts. To assure an adequate margin of control

umder these wind conditions the margin in yaw displacement in one second

specified for helicopters is used. These values were derived from the

results of references 16 and 13 and included an attempt to take into

account the weight of the aircraft. There are indications, however_ from

tests of different sized helicopters that equal margins of control may be

required regardless of the weight of the aircraft. This philosophy,

pointed out in reference 27, suggests that, in general, all VTOL vehicles

regardless of size must maneuver into similar areas with equal ability

and, therefore_ control power and control margins must be suitable for

this kind of VTOL operation. Additional testing is felt required to check

more fully the effect of aircraft size or weight. In the interim, the

requirement has been modified to set as a minimum a yaw displacement value

of _o after one second, regardless of the aircraft size.

Directional control sensitivity.- As noted in previous discussions,

it is felt that the directional control characteristics including sensi-

tivity require further study to define requirements for aircraft of

various sizes and weights. In the interim the sensitivity value of

helicopter requirement 3.3.7 has been recommended.
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Directional control in power-off flight (sutorotation).- This

requirement has been revised to include all tyl es o£ aircraft by refer-

e_cing to the min_num speed as defined in the stall section. In addition,

it _as felt necessary to specify a minimum accc:ptable value for rate of
turn.

Lateral steadiness in hovering.- For reasons discussed previously_

further studies are felt needed to define requ:-rements in addition to that

specified for the amount of lateral control mo_,ion required to hover over

a given spot on the ground.

Lateral control power in hovering and in ::orw_rd flight.- It is

recognized that both control power and damping are important for satis-

factory lateral control characteristics. The !_ignificance of the rela-

tionship of lateral control power to damping _as sho_n initially for

fighter aircraft in the results of reference 26. These results_ from both

flight and simulator tests_ showed that pilot opinion deteriorated at lov_

values of roll control po_<er and at low values of damping. At high values

of roll pov_er there was a loss of precision of control due to sensitivity.

At low d'_nping the control behaved as an accel,_ration command control with

<ulsatisfactory characteristics. A summary of _he results of reference 26_

_{hich represent both flight and simulator test3_ is plotted in figure 7

in terms of LSa$ama x and T. Included in figure 7 are data points from a

Rumber of V/STOL aircraft. In addition, the l%teral control criteria of

reference ip are presented (assuming 5 inches of stick travel) and also

unpublished results of moving base simulator tssts. The latter sets of

data represent both hovering and low-speed forward flight. It can be noted

that the lines of constant pilot opinion (see table II for number defini-

tions) forming the boundaries are approximated by lines of constant bank

angle in one second. It can be shorn that the parameter pb/2V is not

suitable for design purposes since it does no± take into account roll

dsamping and indicates that increased roll rate s are required as speed is

increased. These considerations are not borne out by the pilot opinion

data in figure 7 obtained from reference 26.

The data in figure 7 show as would be exyected that greater control

power _as demanded at io_¢ values of T for airplane flight where evasive

t}qpe maneuvers are made compared to that requJ red for hovering or transi-

tion flight (typified by the larger T value_). In addition_ the results

indicate that greater control power is requir(d as damping is increased in

order to avoid the feeling of a stiff or slug_;ish aircraft. With regard

to d_mpi.ug, the simulator results indicate that T values of the order of

4 seconds };ere considered satisfactory for ho_ er. These simulator results

_ez'e obtained _ith no disturbing effects_ ho_ver_ and, in addition, the

pilot had to cope _£ith only one degree of fre_:dom. Although a number of

V/STOL aircraft are being florin with essentia;ly zero damping_ these

fligb_ts are conducted under still-air conditi.)ns and it is felt that for

practical VTOL operation damping is necessary.
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On the basis of the foregoing_ the requirements for lateral control

for configuration P have been rewritten to delete the parameter pb/2V

used in airplane requirement 3.4.16 and include the roll time constant T

and the use of a given bank angle obtained in one second chosen according

to the lines of constant pilot opinion. A helicopter requirement which

takes airplane weight into account is used for lateral control for hover

and transition (ref. 13). As discussed previously for directional control,

a lower limit is felt necessary to prevent undesirably low roll perform-

ance for heavy aircraft. The roll damping specified for low speeds is

that from the helicopter requirement since this is the best information

available.

The foregoing applies to rolling perfo_nance for full lateral control.

Recent flight experience with the XV-3 has sho_n that particularly in

hovering where roll damping is generally small, the variation of rolling

acceleration with lateral control displacement should be essentially linear

over the control deflection range. In additionj a sensitivity requirement

which is essentially that specified for helicopters (3.3.14) is used to

avoid overcontrolling tendencies in hover and low-speed flight.

It is recognized that additional research is needed to more clearly

define lateral control requirements for all V/STOL concepts and sizes.

For example_ lateral velocity can be obtained either by tilting the thrust

vector_ by banking the aircraft, or by remaining vel_ical and supplying a

side thrust. For aircraft with large inertia about the roll axis the lat-

ter method may be more practical when possible performance losses are

considered. It is felt_ however_ that roll displacement may provide the

pilot with an important cue in a quickening sense and may, therefore_ be

desirable for satisfactory lateral positioning. To clarify the necessity

for physical roll displacement in hovering_ further research is required.

Roll response.- The requirement for time delay in obtaining roll

response is necessary to cover aerodynamic lags inherent in some spoiler

systems. It is felt_ however_ that for the classes of V/STOL aircraft

considered herein_ the requirement for time delay in attaining the maxi-

mum roll acceleration should be independent of the class of aircraft and

should preclude the possibility of incorrect initial rolling direction.

Peak lateral control forces for rolling performance.- The peak lateral

control forces for rolling performance have been _ritten to conform with

one-hand operation in approach and landing where frequent use of the

control is required.

Lateral wheel throw limits.- The use of ±90 ° for wheel throw with one

hand operation may prove undesirable; however_ until sufficient information

is obtained to justify a change to a smaller value_ the aircraft require-

ment has been used _ith the added stipulation that full throw shall be

readily obtainable with one hand.
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Peak lateral forces for various maneuvers.- The requirements for

helicopters and airplanes have been combined to express a maximum lateral

force not to exceed 20 poumds for stick or wheel for V/STOL operation.

Lateral trim changes and effectiveness.- The use of a fixed value of

lateral stick movement to define a trim change is not considered adequate

for V/STOL aircraft since lateral force or margin available is not taken

into account. It is felt preferable_ therefore_ to specify the ability to

balance the airplane laterally for the various, conditions with an allowable

maximum force change and to include a margin of control of i0 percent of

the maximum attainable value to cope with disturbances.

Lateral control effectiveness in dives.- The airplane requirement
has been used umaltered.

Control cross-coupling and transient effects.- The airplane

requirement 3.5.7 is intended to provide protection from excessive loads

at high speeds generated by inertia cross-coupling effects. The maneuver

for airplanes specifies rolls through 360 ° which is considered too large

to be applicable to all V/STOL aircraft. Accerdingly, the roll

displacement has been stated to conform with the mission designation for
each aircraft.

In addition_ as discussed previously for longitudinal control_ lateral

control forces acting to resist displacement _hall not decrease appreciably

with control displacement.

Lateral and directional control force cross-coupling effects_ which

are peculiar to some helicopters, are considered undesirable as noted in

a previous discussion of longitudinal control. The helicopter requirement

has been reworded to eliminate any control force cross-coupling

characteristics.

Control for spin recovery.- The requirement for airplanes has been

made more general to include all aircraft capsble of being spun and to

cover possible effects of engine power on control power. The relatively

high control forces allowed for recovery are considered satisfactory in

view of the emergency nature of the maneuver.

Stalling Characteristics

Required flight conditions.- Because the stalling characteristics

are of particular interest in the transition _egion_ it is felt necessary

to include_ in addition to the standard airpl_ne configurations_ a check

of the stall behavior in wave-off. In addition_ the large effects which

engine power and BLC may possibly have on the stalling behavior require

flight tests with engine power for shallow an_ steep descent approaches

and BLC on and off.
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Definitions of stalling speed.- The stalling speed for conventional

airplanes is defined in reference i as the minimum speed attainable in

flight_ and is normally associated with breakdown of air flow over the

wing immediately after the maximum over-all trim lift coefficient is

attained. The complete stall is characterized by large magnitude pitch-

ing or rolling or by a decrease in normal acceleration in turning flight.

Stalling speed for STOL airplanes which fall into the conventional stall

category will be strongly dependent on engine power_ thrust angle_ or

slipstream magnitude and; therefore_ stalling speed in configuration PA

will vary appreciably depending on whether a shallow or steep descent is

being made.

For V/STOL aircraft which do not possess a conventional stall_ the

stalling speed may be defined as in airplane requirement 3.6.2.1 or 3.6.2.2

with an addition for V/STOL operation. Accordingly; the minimum operating

speed has been added which was previously defined.

Stall warning requirements.- Although the stall w_rning

characteristics defined in airplane requirement 3.613 shall be generally

applicable for V/STOL aircraft with conventional stalling behavior_ it

is felt that the expression of airspeed at which the warning is felt as

a percentage of stall speed is inadequate at low airspeeds. Flight

experience under STOL conditions has pointed out that for low stall speeds

the pilots desired a minimum fixed margin in speed above the stall to

have sufficient margin for safety from stalling due to finite gust dis-

turbances. For this ptu_oose a 5-knot minimum value for sts ll warning

margin is specified. A similar relationship applies to the minimum

landing approach speed; however_ in this case a lO-knot minimum speed

margin from the stall is desired.

For aircraft which are limited in longitudinal control (defined in

airplane requirement 3.6.2.1) and others where a conventional stall can-

not be obtained_ no stall warning has been specified provided no dangerous

flight behavior occurs.

Requirements for acceptable stalling characteristics.- The stalling

characteristics in airplane requirement 3.6.4 have been revised to be

more stringent in the landing approach and landing configurations. In

this area it is felt necessary to limit the maximum allowable initial roll-

off at the stall to the roll angle at which a wing tip or pod may strike

the ground when the aircraft is resting on the landing gear. This philos-

ophy_ which extends from a variety of flight experience in landing

approach_ is intended to place a more practical limit on the allowable

roll-off at the stall.

For the case of failure of the BLC system_ the allowable magnitude

of angular displacement has been relaxed to permit excursions to 30 °

pitchdown; roll_ or yaw_ provided_ however_ no dangerous flight

characteristics arise.
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Prevention of the complete stall and definition of recovery
characteristics are fe_t to be covered adeq_tely by airplane require-
merit 3.6.4.1 with the addition of the effect_ of engine power on control
effectiveness.

Performance (engine) considerations.- Because of the closer tie-in

of engine operation to flight characteristics for V/STOL aircraft_ it is

considered desirable to include the effect of engine operation in certain

areas of flying qualities requirements. Some of the items to be considered

include the following: Engine power changes over the range used operation-

ally should not appreciably affect control power of reaction controls or

other controls (including BLC) which derive _heir effectiveness in part

from the main engine. Engine thrust respons_ shall not compromise the

ability to hold altitude in hover or in goin{i from transition to hover.

Power controls shall not require complicated procedures for power changes.

Thrust control shall be fine enough to permit: control of flight path by

the use of engine controls.

Although the effect of thrust to weight ratio is normally considered

a performance characteristicj the effect on _he over-all flying qualities

should not be overlooked. In particular_ th_ results of flight tests of

a number of jet aircraft in landing approach (ref. ii) have indicated the

necessity that the thrust veight margin _T/_ be at least equal to or

greater than 0.12 at the minimum approach sp_ed. Further tests are needed

to redefine this item for V/STOL operation.

Gyroscopic effects.- Because of the greater ratio of engine gyroscopic

inertial moments to airplane inertial moment_ characteristic of VTOL air-

craft and because of the low aerodynamic dam_ing available_ engine gyro-

scopic coupling effects can have an appreci_ le effect on airplane dynamic

motions. From the flight experience gained on V/STOL aircraft thus far

(see, e.g., ref. 27) it would appear that gy_'oscopic coupling effects can-

not be tolerated to any appreciable degree. Accordingly_ a requirement

to minimize the effects of gyroscopic couplilg has been included for

V/STOL aircraft.
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CONCLUDING REMARKS

The results of a study of handling qual:ties of V/STOL aircraft have

indicated that the majority of V/STOL requir_:ments can be defined by modi-

fications to the current military helicopter and airplane requirements in

part by appropriate use of reference speeds. Since the available data for

the flight conditions peculiar to V/STOL veh: cles are incomplete_ a number

of the requirements can only be presented in qualitative form. Areas where

a more firm quantitative requirement is felt necessary include control

power and damping relationships about all ax_s for various sizes and types

of aircraft_ control power_ sensitivity_ dam_,ing_ and response for height

control_ dynamic longitudinal and dynamic la_:eral-directional stability
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in transitiom imcluding emergencyoperation; hoverimg steadiness;
acceleration and deceleration in transition; characteristics im steep
approaches; amdthrust margin in approach.

AmesResearch Center
National Aeronautics amdSpaceAdministratiom

Moffett Field_ Calif., May23_ 1960



22

APPENDIX

NOTATION

For purposes of this report_ V/STOLairplanes are divided into the
following classes:

Class I - Light observation
Class II - Heavy surveillance ard fighter
Class III - Tactical transport

Configurations used for V/STOLairplanes are similar to those for
airplanes (ref. i).

Symbolsused in this report are defined as follows:

b

CZ

CZp

CI/2

Ca

F

l_a_amax

n_Aa

nL

P

2V

wing span_ ft
rolling moment

rolling moment coefficient_ qSb

_(pb/2V)' per radian

number of cycles to damp to half amplitude

cycles required to double _aplitude

cockpit control force, ib

inertia, slug-ft 2

qSb 2

2VIx C_p_ per sec

initial rolling acceleratio_ for full lateral control

input_ radians/sec 2

normal load factor, in g umits

limit load factor

rolling velocity, radians/sec

helix angle, radians
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q

S

T1/2

V

Vi

VS

W

AT

W

Se

_Sr

S@

cr

©

I vel

dynamic pressure, ib/ft 2

wing area, sq ft

time to damp to half amplitude_ sec

true airspeed, ft/sec

indicated airspeed

stalling speed

v _ sin

airplane gross weight, ib

sideslip angle_ deg

thrust margin

elevator angle_ deg

slope of rudder deflection -sideslip curve

damping ratio (fraction of critical)

pitching velocity_ radians/sec

pitching acceleration_ radians/sec 2

density ratio

i
roll time constant, - _--_ sec

bank angle_ deg

rolling acceleration_ radians/sec 2

rolling parameter, deg/ft/sec

angle of yaw_ deg
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L_ TO, _70_ etc.

r

x,y_ z

Sub script s

aileron

elevator

airplane configurations

r_dder

roll_ ya_ and pitch axes_ r_spectively
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A-25897

Figure i.- The X-14 deflected turbojet airplane.

A-25685

Figure 2.- The XV- 3 convertiplane.
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A-26052

Figure 3.- The VZ-3RY deflected sl_pstream airplane.

Figure 4.- The C-134A STOL airplane.

A-26297
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